
D-Ri30 756 HEAT CHECKING IN THE CONTACT ZONE OF A FACE SEAL (A i/i
THREE-DIMiENSIONi4L MOD..U) NEWJ MEXICO UNIV ALBUQUERQUE
DEPT OF MECHANICAL ENGINEERING F D JU El AL. APR 83

UNCLASIFIED E-2i(83)ONR-4 4-2 N0014 -76C 8871 FG 12/ 1i N

Ehhmhmhmmhhlo

mEhh.hhhE



.

-.-

2-L

11.8

IIJI2 11.4 11-6

MICROCOPY RESOLUTION TEST CHART
a.' NATIONAL BUREAU OF STANDAROS-1963-A

a-%



I.THE UNIVERSITY OF NEW MEXICO
COLLEGE OF ENGINEERING

t0

4

BUREAU OF
ENGINEERING

*RESEARCH
SHEAT CHECKING IN THE CONTACT ZONE OF A FACE SEAL (A THREE-

DIMENSIONAL MODEL OF A SINGLE MOVING ASPERITY)

BY

FREDERICK D...U 7, ,33
,JOHN H. HUANG

REPORT NO. ME-121(83)ONR-414-2

SWORK PERFORMED UNDER CONTRACT NO. OriR-NO0014-76-CO071

Lii APRIL 1983

83 07 15 001

.5 . -*•.~. % g .*~ ,- '- - • ,- .- - . .. ° :. : -



o,

..

Annual Report

*, on

HEAT CHECKING IN THE CONTACT ZONE OF A FACE SEAL (A THREE-
DIMENSIONAL MODEL OF A SINGLE MOVING ASPERITY)

by

Frederick D. Ju
John H. Huang

Department of Mechanical Engineering
The University of New Meyco,
Albuquerque, New Mexico 87131

Report No. ME-121(83)ONR-414-2
Work Performed Under 'Contract No. ONR-NO0014-76-C-O071

April 1983

'"S

"-S

S . S S . .
- - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - -

S - S .S .S 5 . . . . . . . . . . . . . . . . . . . .. -



m W

TABLE Of- CONTENTS

Page

AB S T R A CT... ..... .... ..... ii

NOMENCLAURE................ . . ...... ..... .. .. .. . . ..

LIST OF FIGURE. .. .. .. ... ..... ..... ....... v

1.0 Introduction . . . . .. .. .. .. .. .. .. .. .. . .1

2.0 Stresses from Mechanical Excitation..............6

Basic Governing Equations .. ... ..... ...... .. 6
-Displacement and Stress Fields .. .. ..... ..... .. 7

3.0 Stresses from Thermal Input l0Tj . .. ... .... .... 13

Temperature Field .. . . . . . . . . . 13
Thermal Stress Field. H . . . . . . .8

.444.0 Numerical Results. . .. .. .. .. .. .. .. .. ... 27

4.1 A Moving Rectangular Contact Area of Uniform Pressure
(Case 1) . .. .. .. .. .. .. .. .. .. .. . .27

4.2 A Moving Disk of Uniform Pressure (Case 2) .. .. ...... 37
?94.3 A Moving Disk of Nonuniform Pressure (Case 3). .. ..... 42

5.0 Conclusion . . . . .. .. .. .. .. .. .. . .. . . . .52

6.0 References. .. ... ... .. .. ... .. .. .. .. .53



4 ABSTRACT

- Heat checking phenomenon in mechanical seals resulting from the

passages of a single asperity over the face of a seal ring has been

solved with a thermomechanical model of a semi-infinite medium sub-

jected to the frictional heat source over the moving contact zone. An

earlier analysis of such a problem was based upon a two-dimensional

model of a single moving asperity. Such a load resulted in fracture

which is initiated beneath the surface at the trailing edge of the

moving load. For a better description of the physical problem, a

three-dimensional model is examined in the present study. A single

moving asperity, with a circular or a rectangular geometry of the con-
tact area, is assumed on the mating part of the seal face. The general

solution is obtained for any distribution of contact loads. Numerical

solutions are obtained for uniform and parabolic distributions of pres-
sure over the circular and rectangular contact zones. The traverse

2speed of the friction load is considered the same as the rubbing speed

for the current problem. The roles of material properties and oper-
ating variables are delineated in terms of dimensionless parameters.

The analytical solutions of the mechanical and the thermal stress
fields are solved by means of the double Fourier transforms. The tem-

perature field is obtained by the use of the Green's functions. Numer-

ical results of the corresponding integral solutions are represented in

graphs.
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I Nomenci1 at ure

a Asperity characteristic dimension, the half width of the
rectangular contact area in the direction of traverse or
radius of the circular contact area

b Half length of the rectangular contact area perpendicular to
the direction of traverse

c specific heat

D Differential operator with respect to x3

k Thermal conductivity

Mi Dilatational speed ratio [=V(p/(A + 2u))1/2]

M2 Shear speed ratio [V(plU) 1 1 2 ]

PO Average pressure over the contact area

q Heat flux through the contact area

%o Average heat flux through the contact area (=po V)

R1  Traction over the contact area
t Aspect ratio (b/a) or time

T Temperature field-

{uti, u Displacement field

V Traverse speed of asperity (-xl direction)

1xI} Coordinates fixed to the moving asperity

F) Fourier transform of a variable

ai Partial derivative with respect to xI coordinate

a Coefficient of thermal expansion

atJ Kronecker delta

Dimensionless temperature field (-Tk/qoa)

Thermal diffusivity
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La=6 coefficient

p Lamd coefficient, modulus of rigidity

Uif Coulomb coefficient of friction

p Mass density

Oij Stress field

Dimensionless stress field

07 Mechanical stress field

4ij Thermal stress field

[{,l Dimensionless coordinates (- xi/a)

-U

z
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1.0 INTRODUCTION

The present investigation addresses one specific failure mechanism

in marine seals, that severely affects its service life. The seal is

designed to locate along the propeller shaft to prevent leakage of sea

water through the shaft tunnel. Figure 1 illustrates one assembly of

such device, in which the seal consists essentially of two mating annu-

lar rings, one of which is fixed to the tunnel housing, another is

mounted under spring pressure to rotate with the shaft. The mating

surfaces of the rings therefore are pressed against each other and

rubbing at a high speed. The design nominal pressure between the seal

rings depends on the type of vessel and the location of the seal. For

instance, a low pressure of about 100 kPa (14.5 psi) is sufficient for

most surface vessels; for submarines, the pressure required could

increase by orders of magnitude. Had the pressure been evenly distri-

buted according to design, the life of the seal will no longer be a

serious problem even at a high rubbing speed. However, it is well-
known that the actual contact area may only be a small fraction of the

nominal area at the design interface. In other words, a low nominal

-~ design pressure may very well result in a very high interfacial pres-
sure, thus a very high dry frictional force in the actual contact

area. The high friction would cause locally an extremely high tempera-
ture, called *f lash temperature" by Archard [1]. The local contact

2 area is therefore otherwise called the "hot spot" [2]. In severe cases

-~ the temperature can be extremely high, leading to cracking of the sur-
face [3]. The frictional cracking, or heat checking, has been observed

to occur in seal rings [4). If we use the figure of 10- as area
ratio (contact area/nominal area)--Burton [5) considered 10-4 as a
possible area ratio, a low pressure of 240 kPa (35 psi) could result in

a 240 MPa (35000 psi) local pressure in the contact zone, a pressure

well within the range of fracture initiation with unfavorable Coulomb

coefficients [6].
The cause of the localization of the contact area will not be con-

sidered here; nor will the metallurgical change in the surface layer.
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It will suffice to assume that the localization of contact areas is due

to some form of asperities, which may be fixed to any of the mating

surfaces or may precess with respect to both. Kennedy et al. [7],

using carbon ring against a metallic mating ring of 440 Cs.s, beryllium
copper or 52/00 bearing steel, showed existence of spot asperities on

the metallic rings. Burton [8] reported on the use of aluminum ring on

glass disk, showing hot spot precessing at a much slower speed compared
to the rubbing speed. Marscher [9,10] treated the thermomechanical

stress state in the part that contains the asperity. The present

investigation treats the thermomechanical stress state in the part that

mates with the one containing the asperity and the possibility of heat

checking therein. The formulation also allows extension to problems of

different rubbing speed and precessing speed of the asperity.

Because of the relative size of the seal material and the moving

asperity, the seal will be represented by a half space. The asperity

contacts with the material at the otherwise traction-free surface in a

small rectangular or circular region, which traverses the surface at a

speed (V) of the order of 10 m/s (-400 ips), Figure 2. The coordin-

ates 1xii are fixed to the moving asperity such that xj points toward

the trailing direction of the motion, x2 is perpendicular to the tra-

versing direction, and xa is a depth measure pointing inward from the

surface into the material, Figure 2. For the rectangular contact area,
the aspect ratio, t(- b/a), is a parameter for three-dimensional

effect. For large aspect ratio, the load is effectively a moving line

load that has been represented by a two-dimensional plane strain solu-

tion [6]. In the present report the pressure and tangent force are

arbitrarily distributed over the contact area for the general solutions
in the integral form. Numerical solutions will be obtained specifical-

ly for the uniform and the symmetrical parabolic distributions.

Since the speed of traverse is much smaller than the Rayleigh wave

speed, which for a steel based seal material is approximately 2800 m/s

(_11 x 104 ips), no wave propagation phenomenon is considered. How-

ever, for the same material and a hlf contact width of the order of

3
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1 mm, the Peclft number (Pe = Va/) is of the order of 500, of which

the magnitude is quite sufficient to necessitate the consideration of

the dynamic effect of the traverse speed. It is assumed that the
material remains predominantly elastic and hence that the uncoupled

theory of thermoelasticity holds. Later it will be verified that the

maximum principal stress will be under the yield stress except at a

very small neighborhood where the ultimate strength is reached. The

postulations allow us to treat the mechanical stress state and the

thermal stress state separately. The combined effect will then deter-

mine the possibility of fracture initiation. The general solutions for

the mechanical stress state, the temperature field and the thermal

stress state are derived with the Fourier transform method and the

.Green's function method. The numerical data are computed with a com-
bination of analytical integration and numerical method to avoid heavy

" computation time and stability problems.
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2.0 STRESSES FROM MECHANICAL EXCITATION J

Basic Governing Equations. The working equations come from Cauchy's

law and Hooke's law. In terms of the moving convective coordinates

{xil and with the absence of body forces, the acceleration in

Cauchy's law will have only the convective terms. Hence, we have

M  2
a ij-i (1

am ak'Uk 6ij + Ia + 3 ui) , i,j,k = 1,2,3 (2)

where u1 is the displacement field, oM is the mechanical stress field,ii
3 denotes partial derivative with respect to xi, 6 is the Kronecker

delta, V is the asperity traverse speed, (p, X, P) are material con-

stants. The method to solve (1) and (2) will be similar to the one

used by Eason [11].

Equations (1) and (2) are conveniently solved by the method of

double Fourier transform with respect to (xI, X2)

- ~ 1, 2 x)e (x 1x 147 2 )3r(i, 2 ,x3) =f(xx dx I dx2 . (3)

With the use of the relation

an f= (_i ir)n T , r =1,2r

we get

-i- r -r+Da 3 - =pV 2 x12  , j =1,2,3 ; r =1,2 , (4)

'Summation convention is used for repeated indices of roman minuscules.

6



0rs -IA kuk rs - 7I.rs + Xs~r) 3 ALU 3

am3r -i r'3 + POUr k,r,s = 1,2 , (5)

33-iiM + (A + 2Pi) DiI3

subject to the boundary conditionsI: -1 =- i at x(= (6)

and

Vi + 0 as x3 +- (7)

where the transformed quantities are denoted by a superposed (--. Ri

is the traction on the surface x3 = 0, 0 denotes derivative with
respect to X3 and the index i = 1,2,3.

Displacement and Stress Fields. Solution of the set of ODE (4,5) fol-

lows by combining (4) and (5) first, resulting in

2 2 -2- - - 2L [0 + (M _ 0)x1 -x] -xi( -1)12 ii(0 1) D71 3

- 21 21El ZI20 1u2 1u

K -i2(2  1) ~ i( 2 )[ 22 +(2M2- 2 ' 1)i207

(8)

in which

47

. -I

r .,



V( ) 1/2 m_ V(_)1/2  2 x + 20/

Equation (8) is a system of three simultaneous homogeneous linear

equations for three unknowns {ri}. For nontrivial solutions the

determinant of coefficients should be zero identically, that is

_2 ) -M 2  -i~ 2  - -( 2 _) -i1(82 _1

( x2( 2 02 (- 1 ) -1x( -1)0

2AI. 1 -'~ 1 - 22

-Z(2 2 2 2 2 (29)

2(02  n) (0 2  n2)2 = 0 0

where

nr  ,x + x2 1, .I

Hence, Equation (8) results in

whose solutions, with the consideration of the regularity condition

(7), are

-nlx3 -n2x3I TM l + (B1 + Cix3 e ,
*ii1 1 A3 1

-nlx 3  nx

"92  A2e + (B2 + C2x3) e

'3 A 3 e + (B3 + C3x3) e'n2x3 (10)

8



* -a * .S.

where Al, A2, A3, B1, B2 , B3, C1, C2, C3 are independent of X3.

Substituting Equations (10) into (8) gives certain relations between

these quantities as follows.

G.~

Ar =- - A3 , r = 1,2,

71B+ V28BB3 = _fx'B 2X2.,)

and

C =0, j =1,2,3

Thus, Equation (10) can be rewritten as

iXlA 3  -nx3 -n2x3-Ul e 'n x  + B1 e

1 n1

'p

i 2A3  -n -n2x3
u 

e  1x3 + B2

-n "nlx3 _ " n 2x 3
U3 *A 3 e "---(iB 1 + 2 B2 )e n x (11)

!2

Expressions for the transformed stress components may be obtained

by the substitution of Equations (11) into (5). In particular, we have

9
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M M 2un -n""13 -"2x3
*33 n A3 e + 12u(i 1B1 +7 2B 2) e

13  3 u [7121 + B n + -x 3

32 -n 2A3e n 2 1 B 2  x 2) 82

"31 1 enlx3 u 2(n + -2 Bl+ ' ef n 2x3. (12)
2~ x)1) 2

In view of the boundary condition (7)9 A3 and B1, B2 can be

readily solved and expressed in terms of Tt.

20A n2 1 2-2 + 12

21AFB~~ n X~f 2 j~IXYX 2 -7 PirEX 1 nn2) 2 n2 x1  x2

2.FB -ixnn +2) "- { 12 ( + _ _- ' M - 2n n2) R1
2 n12 2 1- x

2 - 2-,x2 -2 1 -

+ ~(~+~i x 2njn)+n(i i 2

(13)

Following the substitution of Equations (13) into (11), we obtain

w 
(

-n,=

2ui1 U * nIT - 31n 7- ln 2'W3e
1 1  1j2- inn

12

-n (n3  2n n2 ) + n n3 r1 + n x2 (n3 " 2nln2 ) R2 e n2x3
Xl__i -2 3,.), 3 12

10
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-nx 3

4.1 3

2PF V2  (l 2n3T3 + f- nn2 + 2nnR e -ii 2njn2

xxrI 2  2 x 2nR)elX

+x1x2 1 x n 2 -l 2X3
n --- n3  1 nn2) T1f n ( 3  1 nn2) 2 n~ 3 "r2 e

2iiF 93 - (njn3RT3 + iijnjnn2Rj + iix2nln 2RT2) eflX
-n~x

n1( + x2) "3 + in 3Rj + 2 3 2] ef (14)

where

n3 - x1 + x- -7 2 x1 . F--n3- n]n2('l + x2),

Stress components can then be determined by the substitution of (14)

into (5) in accordance with the new variables as follows

N1 - n3 - 2nln2 ; N2 = N1/n2 ; T- n313 + I n2 x 1"l + 'h)

thus we have

-2-2 2 _ n 123 -2

4 ii[i" 2 + n2n3] R I vR2j e' ,22 ff U~ _2- '+ r~ 2iaxln n1RT3

1 E(x x 2  n) +21x]e - 2nn

-+ 7 1X2N2 T1 + i 2 L N2 + n2n3J t 2}e 2x3

111

-'- ,.

,.I . . -2.1 . .. . ._.- .. . . .
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2iaF "3 " " (- +  2= - n1 ) A-, 2iir4] eflX3 ]:

-n

2iiF aj2 * 2i 2 ! e~n1X3 - 2i{ l 2 nn 2 13 + xi2[n2n3

=n 32) 1 2

taf +at N) et

33F x2ii~1 Ue + Iin(x+ x2  2 R

2AF(- 2 -2[~ 1  2 ef23I4 2in1 e + ijni I + n2)f e

trafor exressos(4 au7nd nf (1) Th actua filsarnob

obtained through inverse transform after the substitution of the
boundary values {]t}

I

12 2Y 23

-n1

'.5' * * , '.. -'.-, --. .*9** , 5- , . -. .
-

.
-

'~* * .
,

. . . . . - °- ..- ". •- -' . -. • . . ••b-- 
-2 1 

,-x 
2 -. x3,** 

''*''." - * '



'a

3.0 STRESSES FROM THERMAL INPUT {aT Iij

Temperature Field. The heat equation with constant thermal properties,

assuming quasi-steady state and no heat generation in the medium, as

expressed in terms of the convective coordinates {xi}, is

a T aTT  (16)ii K1

where K is the thermal diffusivity.

The boundary conditions at X3 = 0, are

-q(xl, x2) , in the contact region

ka3T (17)

10 ,elsewhere

T, aiT +0 as (Xixi)l/2 +-. (18)

Note that T is the temperature above the stress-free ambient, k is

the thermal conductivity, q is the heat flux (-RIV - PfpV), where

Pf is Coulomb coefficient and p is normal pressure distribution on

the surface X3 = 0. It is assumed that the mating seal, that contain-

ing the asperity, is an insulator.

The double Fourier transform of Equations (16) through (18)
become, respectively,

[2- (s2 + in)] T-0, (19)

q('xl, 2) i in the contact region

kl6T (20)

0 ,elsewhere

T+0 as x3 + , (21)

31

.-- 13
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- a. -- ~ - -. -2 - . -. .

where s x + andn=-(V/lc)Z 1 . Now let T + i T and Q/k -

l1 + 172. then Equations (19) and (20) result in

2(D2 s) (22)

(0 - s2) f2  nT1  (22)

and

OT 1  P 1 ,

OT2  P2  at x3  0. (23)

Also, (21) becomes

T1, T2 + 0 as x3 +.. (24)

Equation (22) can be expressed as a fourth-order homogeneous

ordinary differential equation which is

[D4 - 2s2D2 + (n2 r 0, r - 1,2 . (25)

In view of the regularity condition (24), the solution of Equation (25)

has the form

Tr = e =Z[Ar cos ez + sin Oz] (26)

where

14
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s 4 + n / /

a.,

.

(s +n21/2 + 211/2

Substituting (26) into (22) and (23) gives

r -A + eB r 1,2 (27)

and

A. n

Susttuin 2 I (28)

A1  Twi 2 (8

B1 = A2 . (29)

Hence, we have four equations for four unknowns Al, A2, Bi and B2,

which can be readily obtained.

2.21pr1 + MY 2
A1 " z2+ 2

2w(2  + 

r- - (30)r1 2

. 2w(w +8)

- p n.21

* ~2 rP + 282V2
8 1 2(30) I'

15
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Following the substitution of the expression (30) into (26) and

according to T -T, + IT2, we obtain T as

Tue 3 [(C1 cos ex3 + C2 sin ex3) P1

+ (C3 cos Ox3 + C4 sin ex3) P2] , (31)

where

C -2w2 + in
2w(W2 + 02)

- 202 + in

28(W2 + 02)

-n - 12wC 3 + ) •
S2w(c 0 )

-n + 12e2

C 2(W2 + Z) '

Again, the temperature field is left in the Fourier transformed expres-

sion, which will be used in solving the thermal stress field. To be

complete and also for comparison, the Green's function solution

approach for the temperature field is given in the following.

The Green's function solution can be expressed as

g(x1  -xix 2  , x x , t -t ) dt'

4pC[x(t -t')

[(x  " x ) "V(t _ t')] 2 + (x2 - + x  2

Sexp [(x - 4Kt - t')

16



which is the temperature at time t at the location (x1, X2, x3) due to

the unit heat flux input emitted at time t' at the location (xj, x ,
0). It can be easily shown that Equation (32) satisfies the governing
heat equation (16).

The temperature field can be obtained by the convolution integral

as

T(X1,X2 ,x3 ,t) q(xj,xj) Ko(x 1 - xj, x2 - xi, x3 , t - t') dxj dxj
-; H

(33)
where 61 indicates the heat-flux input region and

Ko  
t g(x1 - xj, x2 - xi, x3, t - t') dt' . (34)

Substituting (32) into (34) and changing the variable by letting

r R/2V/t - t'J, Ko becomes

V(x1-xj)/2c 2 2 2 2 2
" e (e7xl/2 -T ". (V2R2/ 161c2) dT (35)

-" K° 13 2 kR fR/2,V'-W

where p - density

c - specific heat

k - PcK

R. -(x - xi)2 + (x 2x) 2 + x3 2 .

Considering the steady-state solution, i.e., t + -, Equation (35)

results in

1.

L 17"
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G(xI - xl , x2 - x3) = lim K0i 2 xilt+-

1e-V[R - (x, - x.)]/ 2C (36)

Accordingly, the steady-state temperature field can be obtained as

T-V[R-(x 1-x)]/2c

T(Xl,X2,X3) I f q(xj,xj) e dxi dxj (37)
W HR

which will be employed to give the numerical results for different

cases of application.

Thermal Stress Field. The governing equations for the thermal stress

solutions are based on the theory of quasi-static uncoupled thermoelas-

ticity. The governing equations are then

VV2u + (k +V) a(V. *u) (3k,+ 2u) %a T (38)

and
,4

OT a6 + a(3u + 3u) - (3X + 2P) aT6. (39)
ij k k ij i i ii ij

subject to the boundary conditions

O =0, = 1,2,3 at x3  0 , (40)

a *j ui + 0 as (xixt)1 2  . (41)

The double Fourier transforms of Equations (38) through (41) are

18
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[D2. (ai+i) ii1  a2i i ii2 -ia i1Di3  -ia3i1,T ,(42)
(ai x2  2x) 12 -7fiL .iV

ax -[D ( - 2 - = (43)

iaGtlujl (a- -~ ia2i2Dri2 + )aD - s 3  a DT ,(44)

-T

~ii -

-jr_1 i(alil-ij + r52i2) + rD-i3 - a3T, (45)

S2_2 i(r- J- + ali2W2) + rD-73 , a3T (46)

3= ir(i1j + 72 '2) + alDr 3 . a3T (47)

IA 0 2-(ZA + ), (4

623. Di q (49)

-531 a = Dii -lii (50)

1 0 1= 1,2,3 at x3 =0 , (51)

.

u +0 as (-)1- 2  (52)

where r = X/p, a, = r +2, a2 = r + 1 and a= (3r +2) a.

19
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Equations (42) through (44) form a system of three simultaneous

linear differential equations. The dependent variables are to be

solved. The system can be rewritten as

A =A i , i = 1,2,3 (53)

where A is a differential operator that is the determinant of the

system,

A-(a + x -ai - a2

-Ia2xD -Ia1 2D ai 2 -s2

= al(D 2 - s2)3 (54)

and Ai ls are

-ia3 j -a -ia2 iD .

-x~2

-a3 2  0 (al x i + xj1  -ia22D

a OT -ia 2D -

A -a -ia D
2  -ia2o

2D 2

20
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2-

* - 2 0- - .% , . .-, ... . ... .- .. .- .. . .. - -. .- ; - • - " • .

4 , . " , ' , " , " , " , .. . . . . . . ...



77. . 7

a2x --2x=

0 (a x + x r  -ax3e -a31,T

2 - x -
S1 =-62 a -ia32 2T- =-

-a - 1  -iaI D a OT

The solutions obtained through Equation (53) are particular solutions

which are j

_p 3xr -x 3

r 2a we" r 3 r ( + inx e r ,1,2

__P a3 W

.- = (G cos ex 3 + 3 sin Ox e(

1 2 1 (55)2

)'.%

G3  , --(wGi - -H -.(wH1 -Gj)

Al, A2, B1 and B2 are shown in Equation (30). The complementary

solutions can be determined by Aui = 0. In view of Equation (54) and

considering the regularity condition, we obtain

.i.1  -5x3ul (h + hx ) e
x2

Ii=(h 1+~ 3

21



-C -sx3
* - 2 [a2s(h1 + h2x3) + (a2 + 2) h2] e . (56)

With regard to Equations (55) and (56), the general solutions are

"i " , i = 1,2,3 . (57)

Two unknowns hi and h2 will be determined by substituting Equation (57)

into Equations (47) and (49) and employing the boundary condition (51),

thus we have

-1h a3x2 2 [also HI + (s2 al sw+ ale2 G1l

-. 2ala 2s We

h - x2  [-se H1 - 2 sw+ 2 G1] (58)

Following the substitution of the displacement solution, (56)

through (58), into Equations (45) through (50), the thermal stress

field can be readily obtained.

= i (-blH + b2GI) e + (-b3HI + b4G1 ) e ,

1BT 1 "2x 3 1sx3

--22 I (-b5H + b6G 1) e + (-bH 1 + b8G1 ) e ,

-F33 I -bH + blGI) e +x 3 + u(b - blGl) e 3,

1A 9 ~g1 10 ulu)+ 11 1 121

22
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,.q

_W -sx3
= (-b13H1  + b14G1) e

"x3 + (-b15H1  + b16G1) 12 e 3]

0T3 . j-wx 3  (bH bG)esxl

023 2 - 2 b17H1 " b18G1) e - (b19H1 - b20G1) e

,3x1 _ ) e' X3 bl9H1  b G(
u._ = -- b187 1 '-W ( - ) v( 9

* iwhere

-(n + 12w2 ) PF + (2W - in) F2

H1  2w(w 2 + 02)  i(c1 1 + c 1 2) .

(n - 122 ) 71 + (202 + in) V+
G, 2e(w 2 + 0-) 2 -i(C2V1 + C4P2) j
b 3---. (2w cos Ox3 +2 sin Ox3)

"a3 Cos ex + NO sin

b~w 3 aw 12 a~w s) + (s- W) -2 x3

5 awO(2 w cos ex3 2 sin ex3 )
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-ae

""" 3 x--
b b6 =a Z (' Cos ex 3 + 2we sin ex 3),

a 1 2 +rs
i: 3 x

7 2s a1a2  a, j)

a3 ii 2 ~ w

"lb -a- + 2aI

b8 xa al2 + r(Swa2 s2 + (s -W) x 3  , -

U8 -a- [a s 2 a 2 3
s 

"

b 9  a- awe sin ex 3

a2

10- awO Cos x3 ,

* a3s
blo =l- ci s ex3 , .

i-l a~ws 3

3sb12= [1 + (s -t)x3],.

12  31

a3 xlx2

b4 =-s ex 3

13 awe S 3i
• 

21
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ea
-o. a3  [ a(-s 1

b16"a a2s + (s - ) x3 J

b a3

b17 =T (-8 cos x3 + w sin ex3 )

-a3
b 1 (wo cos ex3 + e sin Ox3)

18 ~ -1 3  3)
1

b =a (-I + sx319g a1w 3

a
b b C-w + s(w- s) x3]
2 1

Note that 1 and 7 2 are the real and imaginary part of n/k

Therefore

Vi " V Q(x1, x2) Cos (x1x1 + Z2x2) dx, dx2

1 Q(x1 x2) s (x +7 2x2) dx1 dx2  (60)
*f.

For the case ]2 a 0, Equations (59) become
FT =-1[(b "'x 3 +"bC+b esx3]

+ b2C2) e + (b3C1 + b4C2) es ,

-T 2 -wx 3- x31- 1 (b5C1 + b6C2) e + (b 8C 2 e

25



'3 T [ -sx31
" I" (b9C1 + b10 C2 ) e -(buC 1 + b12 C2 ) e j

71[(b + bx3 -sx3l

1 b1AC2) e 15 (bsC1 + b16 C2 ) '1A2 e

-2 3 L -weX3
T - F (bTC1  --+ b -3  (b19 C1 + b20 C2 ) e s x 3

= 7117,Fb17c+ b18 C2 ) e - (b + b C e .sx (61)

II
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4.0 NUMERICAL RESULTS

Previous sections have shown the general expressions for the -

transformed mechanical and thermal stress fields. Applying the inverse

Fourier transform and following through the simplification of the

multiple integrals, results for several cases can be obtained 4
numeri cal ly. .

4.1 A Moving Rectangular Contact Area of Uniform Pressure (Case 1)

Mechanical Stress Field

The tractions of the mechanical loading are

. 33 =-R 3 (x 1, x2 , 0) , 032 =-R 2 = 0, o31 = -Rl(X 1, x2, 0)

where

PO constant , x1  <a, x2  <bRI(0 , elsewhereI f3
The corresponding transformed boundary conditions can be readily

0) f R e dx1 dx2

Poi~ X2 , (x 1x1:x2 dxj dx
( I
-0  e72x 17 x

( i t e dx f e1 dx]

(Equation continued on next page.)

*, 27



2P0
"..12. sin(ila) sin(7 2b)

'12

'W1 z-uf '3  W2'0(62)

Following the substitution of (62) into (15) and applying the inverse
transform, the mechanical stress components can be expressed as

where the first term on the right-hand side of this equation denotes

the stress components resulting from the normal loading ff, and the

* second the frictional loading ffl The expressions are

* .. 0 1 Y~2 .. f 3 (1 + ~ 2 M 1 l y e 3

W(s,#) ds d*

-7 of H sin- co2 - 1) M2 1Cos2 # + sin2 *

- 1 Y 2 sin2 * -yx e ~ ,# ds d*

n of2 1 [f [ e513 -syY330 H sin 4cos 4 0-3Y 1Y2 e 3

W(s,f) ds d*

12 PJo 1~w 'r~3 2x3] sd
1n ;7j .- I er e W(s,*) sd

28
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-r - - - - --- - -~ -7 - . 7

-ip 21  r 10 gnlx Y1 3  * YX23'23y f 0HoJ 0 e - ej W(s,+) ds d+

of -iufPf2w 1j3 f [- s 2 W +3 1-MST Mx) -sl

f i fP0  2 s 1i rm(* 2 132

- 2r~ 2  2 +,23] eS2 1 W(sO) ds d0

22 -ifo2 21 M 2 2  *Jelx
22 = if R-f2T Hf. 0 2(78) cos in

ly -yy
+ [(3 y yl2 sin2 . esy2x3} W(s,*) ds d#

f u IfP 2w
~33 Hsln - 1 11~

~~1 ~eST + Y e~''3 W(s,*) ds d

12 i~P Jos Cos e-syx 3  1 [er 3 -2yly 2)

(sin * -+ Y3] e5 X} W(s,*) ds d*

29
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3 -R- (e-Jo - e W(s,*) ds d#

.4.2

31 2 H sin* cos 1y2 c os 2

S"syx

- (Y3 y Y 2 sin2 *) e W(s,#) ds d# '4
J: -'1

(63)

where

-isT cos(6 -

W(s,*) sin(sa cos *) sin(sb sin )

2 21/2 11/22

yt = (1 cos 2 ,1/2 , t =1,2, I
N4

H y y estan'1 x2
3 12'

Equations (63) can be reduced to single integrals by using the

techniques of change of variables and the following equalities:

stn(sa cos ) stn(sb sin *) et'3 cos(sy cos(p - *))se

e {[cos s(a cos * - b sin * - y cos(e -

+ cos s(a cos f - b sin * + y cos(e -

- [cos s(a cos * + b sin , - y cos(e - *)1
+ cos s(a cos * + b sin 0 + y cos(O -

30
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sin(sa cos *) sin(sb sin ) eSYtX3 sln(s Y cos(e -
S

1 1 e. x [[sin s(a cos * - b sin * + y cos(e -
- sin s(a cos # - b sin * - Y cos(O -
- [sin s(a cos + + b sin * + y cos(e -

- sin s(a cos * + b sin - Y cos(e -O

1 e-Sd sin(se) ds = tan-1 ( )

e-dcos(se) fl e-sd ds2

TTds Jo en (e-

The term J0" e -sd ds cancels out during simplification. Thus, the

stress fields are expressed as

2.2. J o R iYP( S1 -Y 1y2S2J d#

~f 1 [y3( 1 2 1) M2 cos2 * + sin 2

S - YY2 sin
2  S2  d,

-P ft 1 [2S
n of="Po Jo' ij [x3Si Yi~ 2S2  d* ,

3 , 0 fir2S

-'n PO 1•12 = 2 I[y 3S - 1y2S2] d
efow

%4
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-Po fir l
023~ [w,*o W21 do

-P fi ylY
A3 2- I W-T [Wl - W2 d

312w~f jO n

f f 0  fr 1 21 M
= o Sfl* 2 COS 0(1 + 7~ 1 W~ U1 j

(Y3P fi 2j[( 8l1)M 2) sin 2  *J + U1 w d

+ 2 y~ 2  2 3 24

f 4fP0 fi 12  1 r' 2  1M 2 2  2~~v~~

cy,. -33 TJ s in 0 Y1(I Cos 13 sn 0]

f I~PO~rY2 $ns2 Y1

~12= .. 1 W~I U 7 2 W2

Y221[(l 2 M212(PpOCs *) y w d

42 fw co Y

322
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31 2w2 fS H~ -in -0 1. 2S 3 1. 2 2.- .. . .. - * --.-

;.

f IfPo f' 1 [i1 cos * sl - i2 .i2 )S d
31 JoH sin ai y 1 2  )SJd

(64)
in which

{Ea cos 0 + b sin 0 + Y cos(e - 0)] + tix 3  I
S= In {s 2

1[a cos 0 - b sin 0 - Y cos(e - ,)] 2 +y x3}

2 22
{[a cos b sin -Ycos(e-,)] + Ytx 3}

-1 a cos 0 - b sin 0 + y cos(O - 0)

J +~~~~~ tan'acs*+*'X30- CSO-)I
+ tan-I a cos 0 + b sin 0 - y cos(e - 0)

Ytx3

- tan-1 a cos 0 - b sin 0 - Y cos(e - 0)
Ytx3

- tan-1 a cos 0 + b sin + y cos(e-Ytx3

t = 1,2

The integrals appearing in Equations (64) are suitable for numeri-

cal evaluation at any point inside the solid. However, most integrals

are not defined at 0 = 0, w/2 or w. Limiting processes are imperative

so that singularities can be removed.
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Thermal Stress Field

Replacing Q(xI,x2) in (60) by expressions (20) and (17), we obtain I

-:' kI =q(xj, x2) cos(i1 i  + Z2x2) dx, dx2

-U P I fafb•f 0
-TF - a_-b cos(Rlx + i2x) dx2 dx1

UfP V sin(7 2b) o--- ' cos (7lX) dxI

X2  a
-2u fPoV• x2)

,k "fP1V2 sin(71 a) sin(, 2b)

x Z 1 1

.2= J H q(xj, x2) sin(ix + 72x2) dxl dx 2

-hP0 I farfb,.0 a bsin(ilx + i 2 x) dx2 dx1

Substituting the expression PIF into (61) and applying the inverse
• . Fourier transform yields!

,,,°a _4 - P ,V [-
r -. "-' -, -2k - 0 .!0 f1 cos(T 2 x2 ) [e -  (blD1 + b2 D2 )

Se 5 x(b 3 O1 + b4D2 ) dx"j d72

34
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022 Ix 31ookIo fl cos(x2x 2 ) e (bD 1  bD)

"sx3

+ (bD + b8 D2 )dxl d-2 ,
"__7 1

4 fPo V  
x20.x

0,33 - 41- f vk
irk e [eX(bg~

f1 cosRx2x2)91 102

-sx3

- e (b11+ b12 D2 ) c'xI dx2 ,

o 4p,,oV llx
O12 3 If 0 I i~~ 2

irk [eW3(fo"D

-x esx3 ](b D b- 0'12 • (15D 3 + 16D4 )  l' 1 d'x"2 ,

=23 "4irfP 2 f, sin(2x2) 17 + b18 D6 )

"sx3(,
-e ib 19D5  b20O6 ) dx21  2

= 31 V'ifl cos(xk2x ) [e 3(b7D + b D

j17 7 b18D8)

"sx3  ] :-
- e (bl 9 D7 + 8 )  1 d'x2

f,

(65 ) ,
in which (65)
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f sin(7,a) sinR 2b)

1 - nD. [- L CO5-X 1X1) + sinfl~xX)J
1 W2 +8e w

02= 8 oslx,) n . sin(T1xl))

4..;D 3  -TL-I-- [w sin('Z1 xl) + n~ cos(Vix1)]

0 4 = -T-- [8 sin(-x 1x) - n cos(iZlx1 ))

D~ n sin("Z1 xl) + w cos(iZlxl))

06 = [n -~--~ sin(-x 1x) + e cos(-Z1xl)]

07 = 1 [n cos(i-x 1x) - w sin("Zxl))

0D En~---~[~ cos('Z1 xl) + 8 sin(iZlxl))

Due to the complexity of the expressions, no existing automatic inte-
gration scheme for the above integrals are efficient. Hence the

Gaussian-Laguerre quadrature formulas are used for the numerical

approximation.
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4.2 A Moving Disk of Uniform Pressure (Case 2)

Mechanical Stress Field

The pressure distributions are assumed to be of the form

0333 -R3(x1, x2, 0) , 032 = R2 =0 , 031 = -Rl(xl, x2, 0)

where

Po y2 = x2+ x2 <_ a2

R3 =

0 , elsewhere

R1 - fR3

The transformed boundary conditions can be obtained by using Equation

(3).

[a2-x2 1/2

R3 '1 ' x2' 0) = [a2x 2  e' + 2 dx 2 dx1

=PO Ja YdyJ esy cos(O-4) dG

-' a=Po f Yjo(SY ) dy

aPo•-- Jj(sa),

1 -- f W3 , W2 -o

Following the same procedure as in Case 1, expressions are

* obtained for the stress components of the forms

37
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aP ft 2
n" 0~...2 Cos * [>3( 1 - MI) S1 y1 rS)

aPo [

22 0 Y

S1 - riY 2 sin 2 * $21 do

n -aP° fw [ 233 -o T 3Si - Yly2S2] do

aP [wsin 20 cy3 sj '] d12212 "TWO ) -- '3 i's

-aPofo, f1*3 sin d,
23 -H wI  W2 ] do

-aP, fi Y1Y3 cos € , ,

31 - H [W W2] do

S-aP Cos 0s 2  1MM

- -2yly2 ) sin2 * + Y2 Y3  W2  do ,

S-aP0  O 1 ~a
22s 1 2 -1) M2 * sifO,2 0+ sin W 3

[(Y3 -2yly2) 2+ y2 sin . W2  d ,

38
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t ,"*

f a q f Y2 cos (1 2 1) 12cos 2  -Y2] WI + Y3W } d .4

-aP0  ' csn

yI f(sRn 2{E1Mcos 2 ) + Y 3 W2 d
f0 2

Coco :01

[CrY3 -'Y 2) 2 2 *)+Y[  J]d},-*,

f -aP0  ('sin 
2#yS ~ d*'.

23 Y12Jo ;]d

-aP ° fw1

31 -- 1,ere I o [y 2 cos 2 * SI (Y - YIY2 sin2 *) S2 ] d* , (66)

where;g

S t  Jl(Sa) cos(sy cos(e - )) e ds ,

fo1

Wt  J1(sa) sin(sY cos(l - *) e ds ,

t - 1,2

The integrals for St and W can be solved analytically so that the

stress expressions have the form of single integrals which can be eval-

uated numerically.

39
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Thermal Stres% Field

P1 and 172 are given by

[2_ 2 1/2

= Ja 22 1/2 cos(x 1xl + 72x2) dx2 dx,
[ 2-x 1/2

:_. fav [ [a .i.x1 X2)

= Re a -a - 2/2e dx2 dx1

-PfPoV aJ,(sa)
s •

-fPoV fa f[a _x11 2

*E _ a-_[a 2_x2 1/2 si(xl + 7 2 ) x2 dx

-Pf PQV fa
= - -- a sin(-ix1 ) sin (72 VaL-xj dxl

=0

Substitution of 7'i into (61) and again application of the inverse

transform results in

O°I, -2P,,oV/-[ -wx3
-- " 2 kf ' 2 cos( 2x2) [e (blO 1 +

sx3+ e5 (b3 1 + b4D2) ] 1 d 2

40
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,.ox
2 fP0 f 2 cos('2x2 ) 5+ b6D2 )

"sx3
+ e ~ 1(b7 + b8D 2) dx1  2

33 2 -.,IoVJ- fo [_x, 1
0 f2 cos(x2x2) e 9D1  2)

-e 3 (b1 1D1 + b12D2 )  d'x" dx2: 122J

O12 f kJJ Vf f2 s(~x2) Few 3o- 144)

" sx3 ]x

be 1(b5 3 + b16D4) 1 12'

0 rk of 2snxx2175 M

S-e b9D5 + b20 6 ) di di2

T1  1 1-2xfPoV ,feWX 
3

'31 ( b DP +fb D0 '  2 cos(x2x2) 177 18

"eSX3( + b ]aI'~-e (b 19D07  b 20D08 ) dx"1 d'x2

(67)
where

41



aJ1(sa)f2

4.3 A Moving Disk of Non-Uniform Pressure (Case 3)

Mechanical Stress Field

The traction boundary conditions are

033 -R3 (x1, x2 O) 32 31 -R(x1, x2, 0)

where

2Po(1 y2/a2 x2 + x2 < a2

3 0, elsewhere

2_ 2 1/2

PO a f/02" 1
!3i 9 2 ) U.2I~ E- 1  1-y/ 2  I1X+22 dx2 dx,

-- -[a -x1

P-JO j~ (1 - 2/a2) etsy cos(e-+) Y dy de

4P J
Vo 2(sa)
SS

2

5%

-. f ' , " o .

The expressions of the stress components are similar to those (66)

in Case 2 except St and Wt being replaced by St and Wt which are of the

forms

42



St -4 : cos(sy cos(8 - e)) ds

J2(sa) e'SYX 3W(Ja) sln(sY cos(e - e)) e ds

t = 1,2

Again St and Wt can be solved analytically and accordingly numeri-

cal results of the stress components can be readily obtained by auto-

matic integration schemes for single integrals.

Thermal Stress Field

It is found that

2-2 1/2

7 1 k _ [a 2_x21/2 - cosRllX + 72x2) dx2 dX1

-4UfPoV J2(sa)

""k- ST

=F 0

The thermal stress field can be obtained by replacing f2 in (67)

with f3 which has the following form

f 4J2(sa)

As an illustration of the numerical evaluation of the integrals,

graphical results are presented in dimensionless form.
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The coordinates are normalized by the half width of the asperity (a),

such that (E, n, ) - (xl/a, x2/a, x3/a). The stress components are
normalized by the average pressure pot o' Z a /po" The temperature

., ij 1.1
rise from the cold state is # = Tk/qoa, where qo is the heat flux

due to the average frictional load, that is, qo = ufpoV. Figures

3-4 show the mechanical principal stresses on the trailing side with

different depths, c, for Cases 1 and 2, respectively. It is noticed

that stresses rise sharply in the neighborhood of C = 1, as €
approaches zero. Such stress singularities at 9 = ±1 are expected

owing to the discontinuities of the loading conditions. Temperature

fields for different cases are shown in Figures 5-7, in which the tem-
perature decays rapidly with respect to the depth. Consequently, the

stress component ol is compressive only in a very thin surface layer

due to the thermal effect. Its magnitude of compressive stress also

decreases rapidly with increase of depth, until finally it becomes
tensile. The consequential effect shown in Figure 8 that the maximum

tensile thermal principal stress is at - 10- 1 and of considerable
magnitude. It should be noted that the difference between the magni-

tude of the thermal stresses (Fig. 8 here and that in [6]) is due to
.C4 in [6] being the dimensionless normal stress instead of the

principal stress. The combined stress field is represented by the

maximum principal stress, shown in Figure 9 for several depths in the
near-surface region. Observe the the Fig. 9 in [6] and that in this

paper show the difference only of order 2. It is attributed to the
difference of 2-0 and 3-0 analyses. The critical asperity pressure is

purposely chosen to be the same (365 MPa). To initiate crack, the
asperity travels at 15 m/s (-600 ips) in the 2-D case, while the

traverse speed has only to be 10 m/s (-400 ips) in the 3-0 case.
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5.0 CONCLUSION
The paper developes the general mathematical model in three-

dimensional formulation to simulate the thermomechanical effect near
the seal surface as a result of a single moving asperity. In the gen-

eral solution, there is no restriction to the traverse and rubbing

speeds of the surface, that is the traverse speed of the asperity may

not be tied to any of the mating surfaces of the seal assembly. The

contact areas by postulation of the present analysis have the shape of

rectangular or circular regions. However, as evidenced from the

results of uniform force distributions over rectangular and circular

areas, the shape of the contact area is not that critical. With refer-

ence to Figure 5, the maximum temperature of 4 = 40 x 10-3 corres-

ponds to 800*C in a steel based seal subjected to an asperity pressure

of 365 MPa (53,000 psi) traversing at a speed of 10 m/s (400 ips). The
sane temperature may of course be attained with a lower asperity pres-

sure of 240 MPa (35,000 psi) but traversing at a speed of 15 m/s (600

psi). The high temperature is maintained only near the surface but
drop of f at c - 101 . For the data used, the thermal boundary layer

is at most of the order of 100 microns. In the present analysis, it is

postulated that the mechanical properties of the seal material remain
unchanged for all temperature levels during the loading. For those

seal materials that may change their mechanical properties at the high
temperatures near the boundary, the boundary layer analysis needs to be

considered. It is not unexpected that the maximumn tensile stress

should occur at the thermal layer interf ace. The subsurface initiation

of fracture is also found in the two-dimensional model at a depth of

one-twentieth of the asperity width [7). The average friction required

for fracture initiation is still high. It corresponds to a pressure

around 240 Mbta (35,000 psi) in Figure 9, and a high Coulomb coefficient

of friction Pf~ 0.5.
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